HW 2: 2.2 Separable eqns, slope fields

2.2: Separable Diff. Eq. continued

Entry Task: A spherical snowball melts (changes volume) at a rate proportional to its surface area. Initial the volume is $1000 \mathrm{in}^{3}$.
Two min. later the volume is $729 \mathrm{in}^{3}$.

Solve the differential equation below (see next page for explanation of equation) and use the initial conditions, then predict how long it will take for the snowball to completely melt.

$$
\frac{d V}{d t}=-D V^{\frac{2}{3}}
$$

Set-up Notes: Note volume, radius and surface area are all changing as functions of time. Let's denote

$$
V=V(t), r=r(t), S=S(t)
$$

And recall: $V=\frac{4}{3} \pi r^{3}, S=4 \pi r^{2}$
And so $r=\left(\frac{3}{4 \pi}\right)^{\frac{1}{3}} V^{\frac{1}{3}}$.
From the given assumption:
$\frac{d V}{d t}=-k 4 \pi r^{2}=-k 4 \pi\left(\frac{3}{4 \pi}\right)^{\frac{2}{3}} V^{\frac{2}{3}}$
Let

$$
D=k 4 \pi\left(\frac{3}{4 \pi}\right)^{\frac{2}{3}}=k(4 \pi)^{\frac{1}{3}} 3^{\frac{2}{3}}
$$

Slope field for the Snowball problem

Example:
You have $\$ 30,000$ in a bank account.

- The account earns 2% annual
interest, compounded continuously. - In addition, you withdraw money throughout the year totaling about \$1000/year.
When will you run out of money?

How much do you need in the account initially so you never run out of money?

Slope field for Bank Account Example

0

Example:
Consider

$$
\frac{d y}{d x}=3 x-y
$$

This new equation is separable!! Solve it, then rewrite your final answer in terms of y and x.

But if you leave this course, you may encounter a method called "change of variable" to "fix" a problem like this. Let's try one.

Assume I tell you to let $v=3 x-y$
Find
$\frac{d v}{d x}=$

Slope Field for last example

